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Abstract

The present paper tries to establish differential equations for identifying the distribution of the
first entry time to a Borel set for some Markov process. Applications are given to cases where the
process is of pure diffusion type and consisting of a diffusion and jump part. The starting point
is to define a process measuring conditional probabilities of entry as time varies over some fixed
interval. Stopping this process at the time of entry, it becomes a martingale. Putting structure
on the process such that Ito’s formula becomes applicable, we can establish (partial) differential
equations for evaluating the probability of first entry to some Borel set for the process of interest.
In particular, this opens the possibility of studying ruin probabilities for fairly general models
and boundary crossing probabilities for Brownian motion when the boundary is an absolutely
continuous function.

Keywords: Ito diffusion, Ito lemma, Stochastic interest, Boundary crossing probabilities, Point
process.

1 Introduction

This paper is motivated by the martingale approach in Mgller (1993), where differential equations
for evaluating the probability of ruin were established by considering a process arising as conditional
probabilities. As outlined there this approach seems to be new. An alternative approach can be seen
in Dassios and Embrechts (1989).

In Mgller (1993) attention was only given to PD (piecewise deterministic) Markov processes. We
will here formulate the approach more generally starting by introducing the first time of entry to
some Borel set for a general Markov process. We can hereby suggest a fairly general approach for
studying the probability of ruin and boundary crossing probabilities for Brownian motion as solutions
to differential equations.

In Section 2, we outline the basic theory and formulate the general martingale property. In
Subsection 3.1 we consider a real-valued Ito diffusion process, and by use of Ito’s formula we obtain
differential equations for evaluating the probability of first entry to some Borel set.

In Subsection 3.2 we extend the model in Subsection 3.1 by adding a jump process to obtaining a
'piecewise diffusion’ process (risk business). We give an example of a differential equation for evaluating
the probability of ruin in an economic environment, where the claim amounts are i.i.d. (independent
and identically distributed) and exponentially distributed and the force of interest (force of return on
an investment) is of Gaussian type.

2 The basic martingale property

Assume there is given a filtered probability space (@, F, F;, P), where the space (2, F, P) is assumed
to be complete, and the family (F;);>0 of o-algbras satisfies the usual conditions.



Let Y = (Yi)i>0 be an adapted (Fi-measurable) cadlag (right-continuous paths with left-hand
limits) process, taking values in R", the n-dimensional euclidian space. The Borel o-algebra on R"™
is denoted B". For a set F' € B", we let F'° denote its complement.

We could allow Y; to take values in a general topological space, but to make the presentation
concise we avoid this. The first entry time

7o = inf{t > 0|Y; € D}, D€ B",

is then a Markov time, that is, {rp < i} € F;. We assume now that Y; is an F;-Markov process,
that is, o(Ys, s > ¢) and F; are independent given Y;. We fix a period of time T < oo and define the
conditional probabilities

¥(ty) = P( jnf _{¥, € D}|Vi=y), yER"
By the Markov property

¥(1,Y) = P( jnf {Y. € D} | ),
and furthermore, by definition,
For any t € [0,T) we write

Irp €T) = I(mpet)+It< Tty <T)

= o <t ) t inf {Y, € D}). 4
(0 <)+ I(rp > DI jnt {Y. € DY) (22)

Defining My = P(tp < T'|F;) = E(I(tp < T)|*:), and taking conditional expectation w.r.t. F; in
(2.2) and using the Markov property, we get

M't = I(TDSt)+P(t<TD<TiJCt)

= I(TD < f) + I(TD > t)P(h:iil«f:‘T{Ys € D} | F)

I(rp <)+ I(rp > )T, Y,). (2.3)

If ¥ is a continuous function from R4 x ™ to R4, then M, becomes cadlag with left-hand limits
M, =I(rp <t)+ I(rp 2 )¥(t,Y;-).

In the sequel we will always assume that ¥ is chosen such that M, becomes cadlag.
Inserting ¢ A 7p in (2.3), we obtain that

Miney = I(mp <)+ I(rp > )¥(t A Tp,Years)

q’(t A TD:Y'D\TD): te [OwT]: (2‘4)

where the first equality sign follows by I(rp < t A7p) = I(rp < t), and the second by (2.1):
U(rp,Y,,) =1, 7o < T, and in the case 7p > T, (2.4) is trivially satisfied. Thus we have obtained
(optional sampling) that W(f A 7p,Yisr,) becomes a (bounded) F;-martingale over [0,T7].

Another relation: Using the optional sampling theorem, we obtain by taking conditional expecta-
tion on both sides in (2.4) w.r.t. the Fy,,,-measurable stochastic variable (t A 7p,Y;a,, ), that

P(T < T‘t /\ TD)}fIATD) = \I‘(t ATD)YO:/\TD)'



More generally: Fix an arbitrary ¢ € [0,T') and define
m = inf{t > t'|Y; € D},
which is the first time of entry after ¢/, and repeat the steps above to obtain that
My, = U(t A1p,Yiar), tE,T], | (2.5)
becomes an Fy-martingale, where
M, = P'<mp<T|F)
= I(p <)+ 1(rp >)U(E,Y:), te[,T].
The martingale (2.5) is useful for deriving differential equations for evaluating ¥(t,y). However, to
obtain useful equations, more structure on Y; is required:
3 Applications

3.1 Diffusions (boundary crossing probabilities)

Firstly, we assume that Y; is a real-valued diffusion process, which in its general form appears as
solution to the stochastic differential equation

t t
;=Y +j b(s,Ys)ds%-'/ o(s,Y;)dB,, (3.1)

0 0
where the coefficients b : Ry x R — R and ¢ : R4 X R — R are Borel-measurable mappings, and
(Bi)i>0 is a Brownian motion assumed to be given in advance on (€2, F, P). Under suitable conditions
on b and o, see e.g. Qksendal (1992, pp. 48-49), and for a given random variable U, E[U?) < oo,
independent of FZ = ¢(B,, s < 00), there exists a (strong) solution to (3.1) with ¥y = U, which is

adapted to the filtration FZ = o(B;, s < t). For the cases to be studied, we will always assume that
there exsist a unique solution to (3.1), such that

= /; o(s,Y,)dB;, (3.2)

is a well defined zero mean FZ-martingale satisfying the Ito isometry (@ksendal 1992, pp. 18-21)

E Uﬂta(s,Y,)str =3 3 U; UZ(S,Y,)ds] , telo,T].

The Ito process has continuous paths of unbounded variation over any finite interval, and its
bracket process is given as

i
<Y >t:/ o?(s,Y,)ds.
0

If o is independent of Y;, we obtain in particular that 5, becomes a Gaussian process, implying
that n; for each ¢ is normally distributed with mean zero and variance

Var[n] = '/01 o?(s)ds.

We now introduce the technique that leads to the differential equations. We assume that ¥(t,y)
has continuous partial derivatives for ¢ € (0,T) and y € D¢, which are denoted %(t,y) and %(t, ),



respectively, and furthermore we assume that g;‘f exists and is continuous. We also assume that the
mappings o(t,y), b(t,y) are piecewise continuous. Ito’s lemma yields for ¢ € [¢/,T") that

U(tAh, Yinr,) = (', Yir)

1ATD 3 iA-rD 5\1,
- / G, Y)ds+f G (5, Y2) s, Yo)ds + (s, Y. )dB]
1}

+£/tm 2(s, Y)az‘l’(s,Ys)ds. (3.3)

By (3.2), the continuity of %(t, y) and the left-continuity of I(rp > ¢), we obtain that
¢
M? = f I(rh > )o(s, Y) (s Y.)dB,, te[t,T), (3.4)
if
becomes a zero mean .’F;B-martingale. Using that W(¢ A p, Yth) is an FP-martingale, we then get
that
\Il(t A T;J,YMT;D) — ‘I(t’,Yf’) — Mf*

tAT] tAT] IATp |
/ “al Al Y)ds+/ ° b(s,Ys)(;—i(s,Ys)ds-{- %/ 2, Y) -~ Y (s, V)ds (35)
! 1

is a zero mean FF-martingale. Obviously (3.5) is continuous and of bounded variation, which implies
that it is constant and therefore equal to zero, see Chung and Williams (1990, pp. 87-88) or Rogers
and Williams (1987, p. 54). Thus for ¢ € [/, T]]

tAT) o tATh 1 tATE 52w
f 57 (s Y)ds+f b(s, Y) (s Y, Jds = —w/ o*(5,Y:)—5(s,Y:)ds. (3.6)
1 2 ¢ By

These arguments lead to:

Theorem 3.1 For any fized t' € [0,7), the process ¥(t A Tpy Riart), t € [t',T), is a (bounded)
martingale, and over the continuity points of o(t,y) and b(t,y), the function V(i,y) salisfies the
partial differential equation

v av 1, a*v
= b —(1 =—=0c"(t,y)—= (1 t % i
5 (LY)+ (t.9) 5, (t:v) 20(,y)ay2(,y), €(0,T7), yeD (3.7)
Proof: Follows by (3.6) since ' is arbitrarily chosen on [0,7T") and 7, > ¢’ by definition. O
In particular, we obtain that ¥(t,Y}), for ¥; € D°, satisfies A¥ = 0, where A is the extended
generator of Y3, but note that ¥(z,Y?) is not a martingale.

In the following we pay attention to the homogeneous case. This is obtained by assuming that
b(t,y), o(t,y), are independent of {. Using the property of homogeneity, we get

W(t,y) = P(iggiT{Ys €A} Y, =y),
= P( inf {Y,eA}|Yo=y)

0<s<T~-1

= Plrp<T-t|Yo=1y).

We can then as well consider



‘Il*(t,y) = P(TD <tlYg = y),
and since W*(¢,y) = ¥(T —t,y) on (0,7], we can then by virtue of Theorem 3.1 state:

Corollary 3.2 Suppose Y; is a homogeneous Ito process. Then over the continuity poinits of o(y) and
b(y), the function U*(t,y) satisfies the partial differential equation
|
v e 1 820~ ‘
——(Ly) +bly)— - (t y) = —50(y)—=(ty), t>0,ye D" (3.8)
ot 2 Oy
If T = oo and Y; is a homogeneous Markov process, we obtain by definition that ¥(¢,y) becomes
independent of ¢, which we denote by ¥(y), and is also obtained by U(y) = limigeo ¥*(t,y). We can
then state:

Corollary 3.3 Suppose Y; is a homogeneous Ito process. Then ¥(Yiar,) is @ (bounded) martingale,
and over the continuitiy pomis of o(y) and b(y), the function W(y) salisfies the dzﬁerentwl equalion

% (y) (y) y € D" | (3.9)

Since ¥(t A TD,YM- )is a martingale w.r.t. the filtration generated by the Brownian motion, it
has a representation of the form (see e.g. Revuz and Yor 1991, p. 187):

b(y)a—(y) =

U(t A Th, Yenrs) = U(I, Vo) + / H(s)dB,, telt',Tl,
tn'
where H is some FEB-predictable process. Using (3.4) and the fact that the martingale in (3.5) is zero,
we get

av

t
U(t ATp, Yiar) = Ut Yy) + / I(rh = S)J(S,Ys)a—y(s,Y,)dB,, te(t,T].
tf

Using the boundary condition
Tiiyi=1 te[0,T), peadl), (3.10)
where 8D°¢ is the boundary of D¢, and using for T' < oo the initial condition
¥(T,y)=0, ye D’ (3.11)

we can hope to identify ¥ from the differential equations above.

Ezample 3.1. Passage time for Gaussian process. Consider the Gaussian process

t
Y;«, = Yo +/ O'(S)st,
0
where ¢(t) is assumed to be continuous. Let 74 be the time of first entry for Y; to the set
D = (—o0,a)U[b,o0), —o0o<a<b<oo.
Thus
Q(t,y) = P(Tab S t |YO e y)u y = (asb):

is the probability that the Gaussian process will exit the interval (a,b) before time ¢ when it starts at
y € (a,b) at time zero.
Using (3.7) we can identify Q(T,y) by solving the partial differential equation

d a2
L) = —5o* 0 g7 t), L€0.), ve(@D)

under the boundary conditions



U(t,a)=V(t,b)=1, te (DY,
and the initial condition
¥(T,y) =0, y€(ab).

There seems to be no tractable expression for the solution, but using the method of Fourier series, it
can be represented as

o0 el T By mm(b —
U(t,y)=1- Z Cm exp (— Q(bft_ a)(z )d ) sin [ b(iay)] )

where C,, are determined by the initial condition and hence are coefficients in the sinus series expan-
ding 1. Thus

Cm = %’/D sin(ma)dz
= r_n;{ — cos(mm)}.

Hence for any T' < oo,

oo 2.2 (T 2 7 '
QT,y)=1-_ Cexp (_m i (s)ds) sin [mﬂ-(b — y)} : (3.12)

2(b— a)? b—a

m=1

The case Y; = B; (o(t) = 1) is classical and appears in e.g. Ito and McKean (1965, pp. 30-31), who
used a different approach. Anyway, (3.12) seems at least obtainable by combining this classical result
with an appropriate change of time. O

Ezample 3.2. Boundary crossing of Brownian motion. Consider the diffusion
Y1 =Y+ Bt - By,
and define
7 =inf{t > 0| Y; <0}, (3.13)

which is the first entry time of ¥; to D = {y|y < 0}.
Let § be a constant and let N'(z) denote the standard normal distribution function. Consider for
any ¢ > 0, the boundary crossing probability

Q(t,9) = P(inf {B. 2 y+ps}|Bo=0),

which 1s equivalent to

Qt,y) = P(r<t|Yo =y).
It is a well-known result that (see e.g. Lerche, 1986, p. 27)
B+ y) 5 pl-y
ty)=1~N (% +e N (=), 3.14
Q(t,y) 7 € 7 (3.14)

with the convention Q(f,y) = 1 for y < 0 and ¢t > 0. Also we see that Q,0)=1,t>0. It is
readily checked that @ satisfies (3.8) for ¢,y > 0, with b(y) = § and o(y) = —1. Furthermore, defining
Q(y) = limy—. Q(t,y), we obtain for # > 0 that

Qly) = e,

which obviously satisfies (3.9) with the same choice of b(y) and o(y) as above, and becomes equivalent
to



QW)= P(r<oo|Yo=y)
under the convention @(y) = 1 for 2,y < 0. Furthermore, it is well-known that
Q¥inr) = ¥ P -ptnr—3s)

is a martingale. O

Ezample 3.3. Consider the homogeneous diffusion
dY; = b(Y,)dt + o(Y;)d By,

and assume that b and o are bounded functions and that ¢ is non-vanishing. It then follows by Revuz
and Yor (1991, pp. 278-289) with  defined as in (3.13) that

co —2] b(u)a_z(u)dud

P(r<oo|Yo=y)= > 0, i (3.15)

! e

fooo —2f b(u)o 2(u)d'utd.

|
which also is obtained by solving (3.9) under the boundary conditions ¥(0) = 1 and ¥(co0) = 0. 0O.

Results on boundary crossing probabilities for Brownian motion is studied by Lerche (1986) when
the boundary is a continuous function. Sheike (1991) and Teunen and Goovaerts (1993) have obtained,
using different motivations, some generalizations when the boundary is a discontinuous function.

3.2 A ’piecewise diffusion’ Markov process

Let (T5,,Zn)n>1 be a sequence of stochastic pairs representing a marked point process such that
Ty < T3 < ... are the non-negative points and Z;, Z, ... are the marks assumed to take values in some
space Z endowed with a g-algebra £, see Brémaud (1981). The mark Z; represents some phenomenon
occurring at time 7, for instance a claim amount. Consider now the process

Rf:RO+/fb(s,Rs)ds+ft (s, R,)dB, — Zf B Zod), ' (3.16)

where b, o are as above, f : R, x Z — R is some Borel measurable mapping and N, is the number
of jumps over (0,¢]. We assume that there exists a unique solution to (3.16). In Mgller (1993) we
studied the case where o(¢,7) = 0, which lead to PD (piecewise deterministic) processes. The jump
pTOCess

N,
X = Zf(Tn,zn),

n=1

is also referred to as the risk process since it typically measures a total amount of random payments
occurred over (0,¢]. Concerning studies on the probability of ruin, special cases of (3.16) appear in
Aase (1985) and Dufresne and Gerber (1991).

It is convenient to write Xt(f) as the stochastic double integral

1= t [ fts.1ama2),

where Ny(A) is the measure
Ni(A)=> I(T; <t, Z; € A),
i=1
counting the number of jumps over (0,¢] with marks in A € £, and I(F) denotes the indicator of a
set in F' € F. Also, we abbreviate N; = Ny(Z). The natural filtration is given by



F¥ < o(Ny(A), = £¢; A €8,

and we assume that N;(A) forall A € £ admits a piecewise continuous F;¥-intensity defined informally
by

M (A)dt = E(dN.(A) | FN) + o(dt).

It can be more informative to write it as
)‘t(A) = )\tf G’t(dz), f Gt(dz) = ].,
A z

where A, thus becomes the intensity of the point process N;, and Gi(dz) is interpreted as the con-
ditional probability, given all prior information and that a jump occurred at time t, that the mark
associated will belong to (z,z + dz].

Assume that

CzZ/OILf(s,z))\,(dz)ds

exists forall ¢ < co. It is a continuous function and is called the compensator of Xff ), implying that
M, =x9 - ¢, ‘ (3.17)

becomes a zero mean martingale w.r.t. the natural filtration, see Brémaud (1981, p. 235).

The model in (3.16) opens the possibility to studying ruin probabilities in an economic environment
where the force of interest is of Gaussian type: Namely, let the force of interest be governed by the
Gaussian process

bt = p(t) + o(t)dBy,

where u(t) and o(t) are real-valued functions, and take then R, to be given by the stochastic differential
equation

AR, = (c(t) + p(t)Ry)dt + o () RydB, mfzf(t,z)dN,(dz), (3.18)

where ¢(t) is playing the role of the premium rate in the model without interest, see also Example 3.4
below.

We can repeat the arguments in Subsection 3.1 and establish a partial integro-differential equation
for evaluating ¥(¢,r). To obtain the Markov property, we assume that N;(A4) is a Poisson process for
each A, implying that the intensity is deterministic and, in particular,

P(Z, € A|T, :x):] @lds), ¥a,
A

Relation (3.3) will then modify to
U(tATp, Yiar, ) — W(t', Yy)

AT W tATh
= [ G Ryt [ Sl s, k) 185, R)ds + o(s, R)dB,]
(3 !
1 [*D 8%w
+§f s RIS (s R)ds+ Y {¥(s,Re) = W(s, Reo)}, (3.19)
1.’

t’(sStATJ’D

where we for any ¢ > 0 write



> {¥(s,R.) — (s, R,_)} =]D L{W(S,Rs_ — f(s,2)) = ¥(s, Rs)}dN,(dz). (3.20)

0<s<t

Then the process
1
M :/ I(th > s){¥(s,Rs_ — f(s,2)) — ¥(s, Ry_ ) }{dN,(dz) — A,(dz)ds) | (3.21)
t.’ .
becomes a zero mean ;¥ V FF-martingale over [t', T] since the integrand is F¥ V FP-predictable, see

Brémaud (1981, p. 235). Using (3.19)-(3.21), we obtain similar to (3.5) that

T(t A TbaYtl\TE) — Ut Yy) — M] — M

tATD tAT tl\'r
- f i) (sR)ds+/ Dagj(sR)b(sR)ds+é/ 2(sR) 2(sR)azs
) 44 4

tATh ! |
+/t, jz{‘P(s,Rr — f(s,2)) — ¥(s,R,_)}As (dz)ds, te [/, T, (3.22)

becomes a zero mean continuous F;¥ VFF-martingale of bounded variation, and hence constant (zero).

We can then state:

Theorem 3.4 Consider the process given by (3.16). For any fized t' € [0,T), the process ¥(t A
Tp, Riary) 15 a (bounded) martingale over [t',T]. Over the continuity points of o(t,r), b(t,r), A:(A)
and f, the function U(t,r) satisfies the partial integro-differential equation

ov ov 1
E(ta"") +b(t: T_I)E(t:"") al~ 2 (t T) 2 (t T')
= MU(2,7) —/ U(t,r— f(t,z))h(dz), t€(0,T), re D°. | (3.23)
z

Corollary 3.2 and 3.3 are modified analogously.

Ruin probabilities are obtained by taking D = {r|r < 0}, and in a numerical implementation it
would then be more convenient to introduce ® = 1 — ¥ and make use of (2.1) (®(¢, R;) = 0, R; < 0)
to obtain

fokis) 8%
a(t,r) +b(t,7') (i T)+ ~g2(1, r)—s 57 51, 7)

= \®(t,r) ~f B(t,r— F(t, 2)Ne(dz), te(0,T) r>0. (3.24)
{z| r>f(1,2)}
Ezample 3.4. The probability of ruin in an economic environment with stochastic interest of Gaussian
type and exponentially distribuled claims. Consider the process R; governed by the modified version
of (3.18):
dR—; = (C + [JR;)dt + G'thBt = dXt,

where ¢, 4 and o are constants and

Ny
Xy= 2y,
n=1



such that Z1, Zs, ... represent the individual claim amounts.
The intensity of N;(A) is assumed to be given by

A (dz) = A G(d2),

implying that the Z,, Z, ... are assumed i.i.d. having distribution function G and independent of N,
which becomes a homogeneous Poisson process with intensity A (> 0).

The R; process is then a homogeneous Markov process, and by virtue of Theorem 3.4, the function
®(r) = 1 — ¥(r), where

T(r) = Plr ¢ 56| Bo = )
satisfies the differential equation
dd 1, ,d%®
(c+pr) () + 507" —5(r)
= A0(r) — )\/ O(r — 2)G(dz), r>0. (3.25)
{zlr22}

Assuming that G is an exponential distribution with mean 1, say, we can, by differentiation on
both sides in (3.25), obtain the third order differential equation

1, ,d3d o1, . d2® e,
57 " a (r)+[c+pr+o (2'." +7)] = (r)+[,u(r—|—1)+c-)\]dr(r)_0_
O
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